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Abstract
The spectra of recently constructed auxiliary matrices for the six-vertex model
respectively the spin s = 1/2 Heisenberg chain at roots of unity are investigated.
Two conjectures are formulated both of which are proved for N = 3 and are
verified numerically for several examples with N > 3. The first conjecture
identifies an Abelian subset of auxiliary matrices whose eigenvalues are
polynomials in the spectral variable. The zeros of these polynomials are shown
to fall into two sets. One consists of the solutions to the Bethe ansatz equations
which determine the eigenvalues of the six-vertex transfer matrix. The other
set of zeros contains the complete strings which encode the information on
the degeneracies of the model due to the loop symmetry s̃l2 present at roots
of 1. The second conjecture then states a polynomial identity which relates
the complete string centres to the Bethe roots allowing one to determine the
dimension of the degenerate eigenspaces. Its proof for N = 3 involves the
derivation of a new functional equation for the auxiliary matrices and the six-
vertex transfer matrix. Moreover, it is demonstrated in several explicit examples
that the complete strings coincide with the classical analogue of the Drinfeld
polynomial. The latter is used to classify the finite-dimensional irreducible
representations of the loop algebra s̃l2. This suggests that the constructed
auxiliary matrices not only enable one to solve the six-vertex model but also
completely characterize the decomposition of its eigenspaces into irreducible
representations of the underlying loop symmetry.
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1. Introduction

This paper is a continuation of a previous work [1] on auxiliary matrices for the six-vertex
model respectively the s = 1/2 Heisenberg chain at roots of 1,

H =
M∑

m=1

σx
mσ x

m+1 + σy
mσ

y

m+1 +
q + q−1

2

(
σ z

mσ z
m+1 − 1

)
σ

x,y,z

M+1 ≡ σ
x,y,z

1 . (1)

Here σ
x,y,z
m denote the respective Pauli matrices acting on the mth site. Throughout this paper

the deformation parameter q will be assumed to be a primitive N th root of unity with N � 3.
While the first part [1] of this work was mainly concerned with the construction of the auxiliary
matrices and their geometric structure, the present paper focuses on the nature of their spectra.
This will allow us to solve the eigenvalue problem of the six-vertex transfer matrix and thus
the Hamiltonian (1). In particular, we will derive the Bethe ansatz equations [2–5]{
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from representation theory and identify their solutions as zeros of the auxiliary matrices’
eigenvalues. Furthermore, we will demonstrate in concrete examples how the spectra of the
auxiliary matrices yield information about the degeneracies connected with the loop symmetry
s̃l2 present at roots of 1 [6, 7]. Before we describe the results of this paper in detail we give
a short introduction into the method of auxiliary matrices and a brief overview of the results
obtained in [1].

1.1. Auxiliary matrices from quantum group theory

The concept of auxiliary matrices was originally introduced by Baxter in the context of his
solution to the eight-vertex model [8–12] and motivated by the lack of spin-conservation. His
approach is described in detail in [13]. While the six-vertex model preserves the total spin, its
infinite-dimensional symmetry algebra s̃l2 at roots of unity does not. It is for this reason that
auxiliary matrices provide the appropriate approach for the discussion of the spectrum and the
degenerate eigenspaces. Unlike the coordinate space Bethe ansatz [14] they do not rely on
spin-conservation. Also the algebraic Bethe ansatz [15] has serious deficiencies. Away from
a root of unity the entries of the monodromy matrix provide a spectrum generating algebra
providing a complete set of eigenstates. This ceases to be true when qN = 1 as then certain
operator products in the Yang–Baxter algebra vanish. If one wants to resolve the structure of
the degenerate eigenspaces at roots of unity the concept of auxiliary matrices is therefore the
only method left.

However, as far as the six-vertex model is concerned an explicit construction for an
auxiliary matrix has only been given by Baxter for the sectors of vanishing total spin, (cf
formula (101) in [10]). His expression applies to generic values of the deformation parameter.
More recently, auxiliary matrices related to the six-vertex model for qN �= 1 have been studied
using infinite-dimensional representations of quantum groups [16–19]. In [19] the connection
with the lattice model has been explicitly investigated and Baxter’s result has been extended
to spin sectors different from zero involving formal infinite power series.

Quantum group theory also played the key role in the construction of auxiliary matrices at
qN = 1 discussed in [1]. It needs to be emphasized that in contrast to [16–19] the construction
in [1] uses finite-dimensional representations which are special to the root-of-unity case.
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Furthermore, this approach differs in several essential points from the one outlined by Baxter
(see sections 1.2 and 1.3 in [1]). Nevertheless, the key idea remains the same.

Recall that the statistical lattice model is defined in terms of the transfer matrix T (z)

(defined in equation (20) below) which besides the deformation parameter q depends on a
spectral variable z. The spin-chain Hamiltonian (1) is obtained from the transfer matrix by
taking the logarithmic derivative with respect to z and setting z = 1 afterwards. One now
introduces an additional matrix Q which following Baxter is called ‘auxiliary’. Its defining
property is the solution of a suitable functional relation which allows one to solve the eigenvalue
problem of the transfer matrix T in terms of Q. The main result of [1] was to explicitly solve
the following operator functional equation:

Qp(z)T (z) = φ1(z)
MQp′(zq2) + φ2(z)

MQp′′(zq−2). (3)

Here φ1, φ2 are scalar functions (cf equation (37) in this paper). The auxiliary matrices
Qp,Qp′ ,Qp′′ depend on additional complex parameters p = (x, y, z, c = µ + µ−1) ∈ C

4

with z �= 1, whose appearance is connected with the enhanced symmetry of the six-vertex
model at roots of 1. These parameters define points on the following three-dimensional
complex hypersurface [20–23]

Spec Z : xy + qN ′
(z + z−1) = µN ′

+ µ−N ′
N ′ =

{
N if N odd
N/2 if N even.

(4)

The points p′ = (x, qN ′
y, qN ′

z, µq + µ−1q−1) and p′′ = (x, qN ′
y, qN ′

z, µq−1 + µ−1q) in the
functional equation (3) are determined by representation theory. When N is even one has to
make the further restriction x = y = 0. For details and the explicit definition of the auxiliary
matrices we refer the reader to [1]. For a subvariety of SpecZ their definition is given below
(see equation (26)) in order to keep this paper self-contained. All matrices in the functional
equation (3) have been proved to commute with each other [1] whence it can be written in
terms of eigenvalues.

There are two main advantages of considering the auxiliary matrix Qp as the central
object instead of the transfer matrix. First, the Bethe roots uB

j solving (2) can be directly
obtained as zeros of the auxiliary matrices’ eigenvalues

0 = Qp

(
zB
j

)
T

(
zB
j

) = φ1
(
zB
j

)M
Qp′

(
zB
j q2

)
+ φ2

(
zB
j

)M
Qp′′

(
zB
j q−2

)
zB
j = euB

j q−1. (5)

Second and more importantly, Qp breaks the infinite-dimensional symmetry of the six-vertex
model at roots of unity and therefore in general is non-degenerate. Employing the functional
equation (3) one can show that this implies that the eigenvalues of the auxiliary matrices must
contain factors which are q2-periodic. Consequently, the eigenvalues of Qp possess additional
zeros besides the Bethe roots which are called complete strings [12, 24]

qN = 1 : Qp

(
zS
j q2�

) = 0 � = 0, 1, 2, . . . , N ′ − 1. (6)

The occurrence of these complete strings at finite length M of the spin-chain is characteristic
to the root-of-unity case. Note that in contrast to the Bethe roots zB

j the string centre zS is
not determined via the functional equation (3). This freedom is at the heart of understanding
the infinite-dimensional symmetry at roots of unity. As we will see in this paper the structure
of the degenerate eigenspaces of the transfer matrix and the Hamiltonian (1) is completely
described by the complete strings.

1.2. Results and outline of the paper

The investigation of the spectra of the auxiliary matrices Qp for arbitrary points on the
hypersurface (4) is a quite complicated task since they form a non-Abelian set. That is, for
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a generic pair p1, p2 ∈ SpecZ and any pair of spectral variables z,w ∈ C the corresponding
auxiliary matrices do in general not commute. Instead one finds [1] that in order to ensure
[Qp1(z),Qp2(w)] = 0 one has to enforce the relations

x1z
−εN ′

1 − z1
= x2w

−εN ′

1 − z2

y1z
εN ′

1 − z−1
1

= y2w
εN ′

1 − z−1
2

ε = 0, 1. (7)

Note that this is sufficient to guarantee that all operators in (3) commute. While the non-
Abelian character of the auxiliary matrices makes them more powerful as a symmetry it
complicates the calculation of the eigenvalues, since the eigenvectors may depend on the
additional parameters p, the spectral variable z and the deformation parameter q. We will
therefore focus only on an Abelian subset for which the eigenvectors exclusively depend on
q and the spectra consist of polynomials in the spectral variable z. This Abelian subset is
defined in the following conjecture which we will prove for the case N = 3 in this paper.

Conjecture 1. For integer N � 3 consider the subvariety in the hypersurface (4) defined by

pµ = (0, 0, µ−N ′
, µ + µ−1) ∈ Spec Z µ ∈ C

×. (8)

Denote the corresponding auxiliary matrices by Qµ(z) ≡ Qpµ
(z). An explicit definition will

be given below, (cf equations (26), (28) and (29)). Then one has the commutation relations

[Qµ(z),Qν(w)] = 0 µ, ν ∈ C
× z,w ∈ C. (9)

Because of this relation we refer to the one-parameter subset of auxiliary matrices Qµ as
‘Abelian’.

For N = 3 this conjecture will be shown to be valid by explicitly constructing the
intertwiner of the quantum loop algebra Uq(s̃l2) associated with the evaluation representations
π

pµ

z , π
pν
w (see definitions (29), (63) in the text and (A.1) in the appendix). That is, we will

demonstrate for q3 = 1 that the tensor products π
pµ

z ⊗ π
pν
w and π

pν
w ⊗ π

pµ

z are isomorphic.
Numerical calculations have also been performed for N = 4, 5, 6, 8 and the conjecture has
been found to be valid.

The conjecture that this assertion holds true for all N is motivated by the observation
that the necessary criteria for the existence of such an intertwiner—which are identical with
the one shown in (7)—are satisfied. These necessary criteria turn out to be sufficient for the
existence when xi , yi �= 0. The corresponding intertwiners have first been obtained in [25].
When xi = yi = 0 the above criteria are obviously trivially satisfied for any values of z,w

and z1, z2. Unfortunately, the parametrization used in [25] does not allow one to take the
limit xi , yi → 0 and to obtain the corresponding intertwiners for the subvariety (8). Thus, we
need to prove the existence for this special case which is done by explicit construction in the
appendix of this paper for N = 3. The case of arbitrary N is left to future work.

It follows from their definition given in equation (26) below that each auxiliary matrix
can be decomposed as

Qµ(z) =
M∑

m=0

Q(m)
µ zm (10)

where the coefficients Q(m)
µ are independent of the spectral variable z. If (9) holds true all

the coefficients commute. In fact, one has
[
Q(m)

µ ,Q(n)
ν

] = 0. Hence, every eigenvalue of the
auxiliary matrix Qµ(z) can be written in terms of polynomials with the most general form
being

Qµ(z) = Nµzn∞PB(z)Pµ(z)PS(z
N ′
, µ). (11)
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Here Nµ = Nµ(q) is a normalization constant not depending on z and the three polynomials
are given by

PB(z) =
nB∏

j=1

(
z − zB

j

)
(12)

Pµ(z) =
n∏

j=1

(z − zj (µ)) (13)

PS(z
N ′
, µ) =

nS∏
j=1

∏
�∈ZN ′

(
z − zS

j (µ)q2�
) =

nS∏
j=1

(
zN ′ − zS

j (µ)N
′)
. (14)

The first polynomial PB contains the zeros zB
j = zB

j (q) of the eigenvalue which do not depend
on the parameter µ and for which there is at least one � ∈ ZN ′ such that zB

j q2� is not a zero of
PB . We will show below that these zeros are finite solutions of the Bethe ansatz equations (2),
whence the notation. Via the polynomial PB(z) they determine (up to a possible sign factor)
the eigenvalue of the six-vertex transfer matrix associated with (11),

T (z) = φ1(z)
Mqn∞ PB(zq2)

PB(z)
+ φ2(z)

Mq−n∞ PB(zq−2)

PB(z)
. (15)

The power n∞ of the monomial in (11) gives the number of the ‘Bethe roots at infinity’ (see
e.g. [26] and references therein). This expression refers to the parametrization in (2) with
zB
j = euB

j q−1 → 0. The appearance of ‘infinite’ Bethe roots is another feature characteristic
to the model at roots of 1. It signals the breakdown of the familiar formula that the number
nB of Bethe roots is related to the number of down spins in the corresponding eigenstate.

The second polynomial Pµ accounts for the possibility of zeros depending on q and µ.
They occur because the additional parameters p shift in the functional equation (3). Again we
allow only for zeros zj (µ) for which there is at least one � ∈ ZN ′ such that zj (µ)q2� is not a
zero of Pµ. Using the transformation behaviour of the auxiliary matrices under spin-reversal
we will show that

Pµ(z) =
nB∏

j=1

(
z − zB

j µ2
) = µ2nB PB(zµ−2). (16)

The last factor PS contains the contribution of the complete N ′-strings (6), where the
string centre zS

j may or may not depend on µ. The additional dependence on the deformation
parameter q is suppressed in the notation. As mentioned before the contribution of the complete
strings encodes the information on the degeneracies connected with the loop symmetry at roots
of unity. In particular, the number nS of complete strings is related to the dimension of the
corresponding degenerate eigenspace of the transfer matrix. In order to arrive at this result we
need to determine the number of possible eigenvalues (11) in a degenerate eigenspace of the
transfer matrix.

In the case N = 3 this information will be derived from the following functional equation:

N = 3 : Qµ(z)Qν(zν
2q2) = Qµνq(zν

2q2)[qM(z − 1)MT (zq) + (zq2 − 1)M ]. (17)

The above identity relates a product of two complete string contributions (14) to a single one,
thus imposing severe restrictions on the possible µ-dependence of the string centres zS

j (µ).
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One finds that only two possibilities are allowed: namely, one has

either zS
j (µ) = zS

j or zS
j (µ) = zS

j µ
2. (18)

Here zS
j denotes the (constant) value of the string centres in the limit µ → 1. These values are

fixed in terms of the Bethe roots via the following remarkable identity which is also deduced
from (17),

lim
µ→1

NµPS(z
N ′
, µ) = z−n∞

∑
�∈ZN ′

q2(�+1)n∞(zq2� − 1)M

PB(zq2�)PB(zq2(�+2))
. (19)

Both results taken together imply that for each eigenvalue (15) of the transfer matrix which
possesses a fixed number of Bethe roots, finite and infinite ones, there are 2nS possible
eigenvalues of the auxiliary matrix. Since the auxiliary matrices break the infinite-dimensional
symmetry of the six-vertex model as well as spin-reversal symmetry they are non-degenerate.
Thus, the corresponding 2nS eigenstates yield a basis for the degenerate eigenspace of the
transfer matrix.

Note that the crucial functional equation (17) is only valid for N = 3 and must be modified
for N > 3. Nevertheless, the outcome ought to hold true in general leading to the formulation
of the second conjecture.

Conjecture 2. The identity (19) and the restriction (18) on the µ-dependence of the complete
string centres not only holds true for N = 3 but applies to all primitive roots of unity of order
N � 3. This in particular implies that each eigenvalue of the six-vertex transfer matrix allows
for 2nS eigenvalues of the auxiliary matrix.

While we will provide a proof of this identity only for N = 3 we performed numerical
checks for N = 5, 6, 8 verifying the second conjecture also in these cases. Note also that this
assertion coincides with previous results in the literature [6, 24, 28, 27] obtained by numercial
calculations and use of the loop algebra symmetry s̃l2 which has been established in the
commensurate sectors 2Sz = 0 mod N [6, 7]. In this context Fabricius and McCoy suggested
in [28] an expression for the classical analogue of the Drinfeld polynomial [29]. The latter
describes the finite-dimensional irreducible representations of the loop algebra [30].

The main result of this paper is that the contribution of the complete strings (19) of the
auxiliary matrices constructed in [1] coincides with the proposed expression for the classical
analogue of the Drinfeld polynomial. We will address this point in the last section of this
paper when discussing concrete examples. They suggest that the spectra of the auxiliary
matrices describe the decomposition of the eigenspaces into irreducible representations of the
loop algebra. This is of particular importance as the auxiliary matrices have been defined for
all spin sectors, while the loop algebra generators have only been constructed for the sectors
where the total spin is a multiple of the order N.

The outline of the paper is as follows. In section 2 we introduce our conventions in
defining the six-vertex model and review the definition and properties of the auxiliary matrices.
Section 3 discusses the implications of the functional equation (3) for the form of the
eigenvalues (11). Section 4 deals with the transformation under spin-reversal, a symmetry
which is broken by the auxiliary matrices. Section 5 shows that the eigenvalues of the auxiliary
matrices occur always in pairs of opposite momenta and gives the relation between them.
Section 6 contains the proof of the crucial functional equation (17). Section 7 summarizes the
results. In particular, the connection with the representation theory of the loop algebra s̃l2 is
made.
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2. Definitions

In order to keep this paper self-contained we briefly recall our conventions for the definition
of the six-vertex model. The transfer matrix is given as the following trace over an operator
product:

T (z) = tr
0
R0M(z)R0M−1(z) . . . R01(z) (20)

with

R = a + b

2
1 ⊗ 1 +

a − b

2
σ z ⊗ σ z + cσ + ⊗ σ− + c′σ− ⊗ σ + σ± = σx ± iσy

2
(21)

being defined over C
2 ⊗ C

2 in terms of the Boltzmann weights of the six-allowed vertex
configurations,

a = ρ b = ρ
(1 − z) q

1 − zq2
c = ρ

1 − q2

1 − zq2
c′ = cz. (22)

For convenience we shall henceforth set the arbitrary normalization factor to ρ ≡ 1. The lower
indices in (20) indicate on which pair of spaces the R-matrix acts in the (M + 1)-fold tensor
product of C

2. The explicit dependence on the parameter q is suppressed in the notation.
The six-vertex transfer matrix possesses a number of finite symmetries given by the

vanishing of the following commutators:

[T (z), Sz] = [T (z),R] = [T (z),S] = 0 (23)

where the respective operators are defined as follows:

Sz = 1

2

M∑
m=1

σ z
m R = σx ⊗ · · · ⊗ σx S = σ z ⊗ · · · ⊗ σ z = (−1)M/2−|Sz|. (24)

The first operator is the total spin, the second invokes spin-reversal and the third has eigenvalue
+1 or −1 depending whether the number of down spins n in a state is even or odd. The finite
symmetries and the properties of the Boltzmann weights (1) can be used to derive for spin-
chains of even length, M = 2M ′, the following useful relations of the transfer matrix:

T (z, q−1) = T (z−1, q)

T (z,−q) = ST (z, q) = T (z, q)S (25)

T (zq−2, q) = b(z−1)−MT (z−1, q)t .

Here we have temporarily introduced the explicit dependence on the deformation parameter q
in the notation. The (25) transformation properties impose restrictions on the spectrum of the
transfer matrix. Henceforth, we shall assume M to be even.

2.1. A one-parameter family of auxiliary matrices

As explained in the introduction only a subclass of the auxiliary matrices constructed in [1]
will be considered, namely the ones associated with nilpotent representations. In terms of
the hypersurface (4) this class of auxiliary matrices corresponds to the points (8). We now
explicitly define this one-parameter family of auxiliary matrices setting

Qµ(z) = tr
0
L

µ

0M(z/µ)L
µ

0M−1(z/µ) · · · Lµ

01(z/µ) L
µ

0m ∈ End(V0 ⊗ Vm) µ ∈ C
×.

(26)

Here the operators in the trace can be expressed as 2 × 2 matrices with operator-valued entries

Lµ =
(

Aµ Bµ

Cµ Dµ

)
= Aµ ⊗ σ +σ− + Bµ ⊗ σ + + Cµ ⊗ σ− + Dµ ⊗ σ−σ +. (27)
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The operators Aµ,Bµ,Cµ,Dµ ∈ End(CN ′
) are given as

Aµ(w) = wqπµ(t) − πµ(t)−1

Bµ(w) = wq(q − q−1)πµ(t)πµ(f ) (28)

Cµ = (q − q−1)πµ(e)πµ(t)−1

Dµ(w) = wqπµ(t)−1 − ρ−πµ(t)

with the N ′ × N ′ matrices πµ(t), πµ(e), πµ(f ) defined through the following action on the
standard basis {vn} in C

N ′
[20, 21]1:

πµ(t)2vn = µ−1q−2n−1vn πµ(f )vn = vn+1 πµ(f )vN ′−1 = 0

πµ(e)vn = µ + µ−1 − µq2n − µ−1q−2n

(q − q−1)2
vn−1. (29)

The matrices πµ(t)2, πµ(e), πµ(f ) define a representation πµ of the quantum group Uq(sl2)

at qN = 1, i.e. they are subject to the relations

πµ(t)πµ(e)πµ(t)−1 = qπµ(e)

πµ(t)πµ(f )πµ(t)−1 = q−1πµ(t) (30)

[πµ(e), πµ(f )] = πµ(t)2 − πµ(t)−2

q − q−1
.

The elements generating the centre of the quantum group take the values

πµ(f )N
′ = πµ(e)N

′ = 0 πµ(t)2N ′ = µ−N ′
(31)

and

qπµ(t)2 + q−1πµ(t)−2 + (q − q−1)2πµ(f )πµ(e) = µ + µ−1. (32)

There are several advantages of defining the auxiliary matrix in terms of the representation
πµ. As a consequence of the quantum group relations one has the identity

L
µ

12(w/z)L
µ

13(w)R23(z) = R23(z)L
µ

13(w)L
µ

12(w/z) (33)

which implies that the auxiliary matrix and the transfer matrix commute,

[Qµ(w), T (z)] = 0. (34)

In addition, one derives from the following non-split exact sequence of evaluation
representations πµ

w [1]

0 → π
µq

w′ ↪→ πµ
w ⊗ π0

z → π
µq−1

w′′ → 0 w = w′q−1 = w′′q = z/µ (35)

the specialization of the functional equation (3) to the subvariety (8)

Qµ(z)T (z) = φ1(z)
MQµq(zq

2) + φ2(z)
MQµq−1(zq−2). (36)

Here π0
z is the root-of-unity limit of the two-dimensional fundamental representation defining

the six-vertex model. The corresponding point on SpecZ is p0 = (0, 0, qN ′
, q2 + q−2). The

complex numbers w, z play the role of evaluation parameters respectively spectral variables.
The coefficient functions are given by2

φ1(z, q) = b(z, q)q− 1
2 and φ2(z) = q

1
2 . (37)

1 This parametrization of the auxiliary matrices and the root-of-unity representation slightly differs from the one
used in [20, 21] respectively [1]. Instead of using the parameter λ (cf equation (43), section 2 in [1]) it is more
favourable to use the variable µ = λ−1q−1 as this facilitates the identification when taking the nilpotent limit from a
generic cyclic representation p = ϕ(ξ, ζ, λ).
2 These coefficients are obtained from the one in [1] by setting ρ±(z) = (zq)

1±1
2 in equation (69) (section 3).



Auxiliary matrices for the six-vertex model at qN = 1 393

All matrices in equation (36) have been shown to commute, whence they can be simultaneously
diagonalized and the eigenvalues of T can be expressed in terms of the eigenvalues of the
respective auxiliary matrices.

For N = 3 we will show that the auxiliary matrices obey the stronger commutation
relations (9). For N > 3 we assume that conjecture 1 holds for the reasons stated in the
introduction.

Recall from [1] that the auxiliary matrices for generic p ∈ SpecZ break all the finite
symmetries of the six-vertex model. However, the one-parameter family (26) which constitutes
a subvariety preserves two of the finite symmetries of the six-vertex transfer matrix, namely

[Qµ(z), Sz] = [Qµ(z),S] = 0. (38)

Spin-reversal symmetry on the other hand remains broken [1],

RQµ(z)R = Qµ−1(zµ−2) = (−zq/µ)MQµ(z−1q−2µ2)t . (39)

Employing the Uq(sl2) algebra automorphism e → f, f → e, t±1 → t±1, q → q−1 one
proves the additional relation

Qµ(z, q) = Qµ(zq2, q−1)t (40)

which allows one to derive the adjoint of the auxiliary matrix

Qµ(z, q)∗ = Qµ̄(z̄, q−1)t = Qµ̄(z̄q−2, q). (41)

These identities will prove crucial in the following investigation of the eigenvalues (11).

3. The TQ equation in terms of eigenvalues

We start our analysis of the spectra of the auxiliary matrices by inserting the expression (11)
in the functional equation (36). Recall from the introduction that (11) is the most general form
of the eigenvalues provided (9) is true. By abuse of notation we will denote the operators and
their eigenvalues by the same symbols. We obtain from (36),

T (z)NµPB(z)Pµ(z)PS(z
N ′
, µ) = φ1(z)

MNµqq
2n∞PB(zq2)Pµq(zq

2)PS(z
N ′
, µq)

+ φ2(z)
MNµq−1PB(zq−2)Pµq−1(zq−2)PS(z

N ′
, µq−1).

The eigenvalues of the transfer matrix (20) are independent of µ, whence the polynomials
Pµ, Pµq, Pµq−1 must cancel on both sides of the functional equation (36) except for a constant
factor q±2n. Up to a possible renumeration of the zeros zj (µ), this implies the following
relation:

zj (µq) = zj (µ)q2. (42)

By the same argument one deduces that the complete string centres zS
j (µ) can only differ by

powers of q for µ → µq±1,

PS(z
N ′
, µ) = PS(z

N ′
, µq) ⇒ PS(z

N ′
, µ) = PS(z

N ′
, µN). (43)

In addition, we can conclude that the ratios Nµq/Nµ,Nµq−1/Nµ of the normalization factors
are independent of µ,

Nµq/Nµ = Nµ/Nµq−1 . (44)

Thus, we deduce the following preliminary form of the eigenvalues of the transfer matrix:

T (z) = φ1(z)
Mq2n∞+2nB

Nµq

Nµ

PB(zq2)

PB(z)
+ φ2(z)

Mq−2n∞−2nB
Nµq−1

Nµ

PB(zq−2)

PB(z)
. (45)
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This form is ‘preliminary’ as we will determine the ratios of the normalization constants below.
Evaluating the left-hand side of the Q relation at a zero z = zB

j we obtain also a preliminary
form of the Bethe ansatz equations,

0 = φ1
(
zB
j

)MNµqq
2n∞PB

(
zB
j q2

)
+ φ2

(
zB
j

)M
q−2n∞Nµq−1PB

(
zB
j q−2

)
. (46)

These equations ensure that the eigenvalues of the transfer matrix have residue zero when the
limit z → zB

j is taken. In fact, one finds that

lim
z→zB

j

T (z) = lim
z→zB

j

(
φ1(z)

Mq2n∞+2nB
Nµq

Nµ

PB(zq2)PB(zq−2)

PB(zq−2)PB(z)

+ φ2(z)
Mq−2n∞−2nB

Nµq−1

Nµ

PB(zq−2)

PB(z)

)
= 0.

Below we will see that the zeros of the polynomial PB in fact coincide with the finite solutions
of the Bethe ansatz equations (2), i.e. they are the Bethe roots at qN = 1. Note that it might
also happen that the zeros zB

j = 1 and zB
j = q−2 simultaneously occur. While this possibility

looks problematic in light of the parametrization used in (2), equation (46) shows that it does
not pose a problem as both sides of the equation then vanish. Also the limit z → 1 yielding
the momentum eigenvalue in (45) stays well defined. We therefore include these zeros in the
set of Bethe roots.

4. Transformation under spin-reversal

We now discuss the implications of spin-reversal. First note that we can deduce from (34), (9)
and the integrability of the six-vertex model, [T (z), T (w)] = 0, that the auxiliary and transfer
matrix have common eigenvectors which neither depend on the spectral variable z nor on the
parameter µ. Let v = v(q) be such a common eigenvector with eigenvalue (11). Then we
find according to (39) that

Qµ(z)Rv = RQµ−1(zµ−2)v

= Nµ−1zn∞µ−2n∞PB(zµ−2)Pµ−1(zµ−2)PS(z
N ′

µ−2N ′
, µ−1)Rv. (47)

Furthermore, the above eigenvalue must satisfy the functional relation (36),

Qµ(z)T (z)Rv = [φ1(z)
MQµq(zq

2) + φ2(z)
MQµq−1(zq−2)]Rv

RQµ−1(zµ−2)T (z)v = R[φ1(z)
MQµ−1q−1(zµ−2) + φ2(z)

MQµ−1q(zµ
−2)]v.

(48)

Here we have exploited that the transfer matrix is invariant under spin-reversal. In the previous
section, we verified that the eigenvalues of T (z) have 3nB zeros at zB

j , zB
j q±2. These zeros

correspond to the finite Bethe roots as we will see shortly. In equation (48) these zeros must
originate from the polynomial

Pµ−1(zµ−2) = µ−2n

n∏
j=1

(z − zj (µ
−1)µ2)

as the factors PB(zµ−2) and the contribution of the complete strings PS(z
N ′

µ−2N ′
, µ−N) cancel

on both sides of the equality sign. In fact, replacing µ → µ−1 we obtain the expression

T (z) = φ1(z)
M Nµq−1

Nµ

Pµq−1(zµ2)

Pµ(zµ2)
+ φ2(z)

M Nµq

Nµ

Pµq(zµ
2)

Pµ(zµ2)
.

We saw already earlier that T (z) does not contain any poles, i.e. the zeros zj (µ)µ−2 have now
to satisfy the preliminary Bethe ansatz equations,

0 = φ1(zj (µ)µ−2)MNµq−1Pµq−1(zj (µ)) + φ2(zj (µ)µ−2)MNµqPµq(zj (µ)).
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Consequently, we have the zeros zj (µ)µ−2, zj (µ)µ−2q±2 of the eigenvalue which must
coincide with the zeros zB

j , zB
j q±2. Hence, after a possible renumeration we are led to

the conclusion

zB
j = zj (µ)µ−2 (49)

which proves relation (16). Using this identification we can now determine the ratios of the
normalization constants by comparing with the earlier expression (45) for the transfer matrix
eigenvalue and employing (44),(Nµq−1

Nµ

)2

=
(

Nµ

Nµq

)2

= q2n∞+4nB ⇒ Nµq = ±Nµq−n∞−2nB . (50)

Inserting this result back into (45) the final expression (15) for the six-vertex transfer matrix
eigenvalue associated with (11) is obtained up to a possible sign factor. This ambiguity is due
to the square root in (50).

The missing step in order to compare this result with the outcome of the coordinate space
Bethe ansatz is to verify that the equations (46) coincide with (2). Employing (44) a simple
calculation gives(

1 − zB
j q2

q − zB
j q

)M

= q2n∞+2nB−M

nB∏
k=1
k �=j

zB
j q2 − zB

k

zB
j − q2zB

k

. (51)

Except for the additional phase in front of the product this coincides with (2) if we identify
z = euq−1, q = eiγ . For real eigenvectors we will show momentarily that the phase factor
is equal to one. In the general case of complex eigenvectors we do not have a proof that the
phase factor is always trivial. However, numerical calculations for N = 3, 4, 5, 6 and spin
chains up to the length M = 11 have so far not produced any counter example.

5. Pairs of eigenvalues

In this section we are going to exploit the relations (39) and (40) of the auxiliary matrix to
show that the eigenvalues occur in pairs. Combining these two identities we obtain

Qµ(z, q) = (−zq/µ)MQµ−1(z−1q−2, q)t = (−zq/µ)MQµ−1(z−1, q−1). (52)

According to (9) we can find eigenvectors v which only depend on the deformation parameter,
i.e. v = v(q). Equation (52) then shows that the eigenvectors come either in pairs, (v(q),

v(q−1)) with

Qµ(z, q)v(q) = Nµ(q)zn∞PB(z, q)Pµ(z, q)PS(z
N ′
, µN)v(q) (53)

and

Qµ(z, q)v(q−1) = (−zq/µ)MNµ−1(q−1)z−n∞PB(z−1, q−1)Pµ−1

× (z−1, q−1)PS(z
−N ′

, µ−N)v(q−1)

or are real, v(q) = v(q−1) = v(q), in case of which the two eigenvalues above must be equal.
From (25) we infer that the two eigenvectors (v(q), v(q−1)) have momentum k of opposite
sign with

eik := lim
z→1

T (z, q) = ±q
M
2 −n∞−2nB

nB∏
j=1

1 − zB
j (q)q2

1 − zB
j (q)

.
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Rewriting the eigenvalue of v(q−1) in the form (11) one deduces that the number of infinite
Bethe roots transforms according to

n∞ → M − n∞ − 2nB − nSN
′ (54)

while the finite Bethe roots and complete string centres of the respective eigenvalues are related
by the transformations

zB
j (q) → 1

/
zB
j (q−1) and zS

j (µN) → 1
/
zS
j (µN). (55)

Finally one finds for the normalization constants the mapping

Nµ(q) → Nµ−1(q−1)(−1)M+nSN ′
µ−M−2nB qM

nB∏
j=1

zB
j (q−1)2

nS∏
j=1

zS
j (µ−1)N

′
. (56)

The case of real eigenvectors can only happen when the corresponding eigenvalues of
the translation operator T (z = 1, q) are real, i.e. k = 0, π . Then (52) becomes an identity
in terms of eigenvalues and Bethe roots as well as string centres must be invariant under the
transformation laws (54), (55). This implies for v(q) = v(q−1) the identities

M = 2n∞ + 2nB + nSN
′ (57)

PB(z−1, q−1) = (−z)−nB PB(z, q)

nB∏
j=1

zB
j (q)−1 (58)

PS(z
−N ′

, µ−N) = PS(z
N ′

, µN)(−zN ′
)−nS

nS∏
j=1

zS
j (µ)−N ′

. (59)

Note that (57) fixes the phase factor in (51) to be q−nSN ′ = (−1)nS(N+1) and completes the
derivation of the Bethe ansatz equations (2) for odd roots of unity and real eigenvectors. For
N even we will see momentarily that there is always an even number of complete strings,
whence (2) also applies in this case.

The relation (57) also implies that in a degenerate eigenspace of the transfer matrix with
real eigenvectors and a fixed set of Bethe roots the number of complete strings is constant.
Below we will see for N = 3 that this also holds true for complex eigenvectors by proving the
functional equation (17) and the identity (19).

Inserting the expressions (58) and (59) into the identity (52) yields the following equation
for the complete string centres:

(Nµ/Nµ−1)µM+2nB

nS∏
j=1

zS
j (µ)N

′ = q2nB

nB∏
j=1

(
zB
j

)2 = 1. (60)

Here we have used that

lim
z→1

T (z, q) = (−q)−nB

nB∏
j=1

zB
j (q)−1 = ±1. (61)

Exploiting that zS
j (µ−1q±1)N

′ = zS
j (µ−1)N

′
and (50) leads to the further restriction

(µq)M+2nB (Nµq/Nµ−1q−1) = qM−2nB−2n∞µM+2nB (Nµ/Nµ−1) ⇒ qnSN ′ = 1. (62)

Thus, in the case of even roots of unity there is always an even number of complete strings.
This completes also the derivation of the Bethe ansatz equations (2) for even roots of unity by
showing that the phase factor in (51) is equal to one.

Note that up to this point all relations have been derived for general N ′ � 3. Thus, while
the conjecture (9) is only proved for N = 3 in this paper, the derivation of the spectrum
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of the auxiliary matrices applies to all roots of unity once the commutation relations (9) are
established.

6. A new functional equation for N = 3

In this section we prove for q3 = 1 the two important formulae (19) and (18) employing the
functional equation (17). While the explicit form of this functional equation is characteristic to
the case N = 3 the representation theoretic method applied to derive it is not. Indeed, the line
of argument which employs the decomposition of tensor products of evaluation representations
via exact sequences also applies to the general case which we leave to future work. We only
review the key steps in the derivation of (17), since the strategy is analogous to the one used
in [1] to derive (3).

We start by recalling the concept of an evaluation representation. The root-of-unity
representation (29) of the finite quantum algebra Uq(sl2) can be extended to a representation
πµ

w of the quantum loop algebra Uq(s̃l2) setting

πµ
w(e0) = wπµ(f ) πµ

w(f0) = w−1πµ(e) πµ
w(k0) = πµ(t)−2

πµ
w(e1) = πµ(e) πµ

w(f1) = πµ(f ) πµ
w(k1) = πµ(t)2.

(63)

Here {ei, fi, ki}i=0,1 denotes the Chevalley–Serre basis of the quantum loop algebra (see e.g.
[1] for further details and the conventions used). Employing the coproduct

�(ei) = ei ⊗ 1 + ki ⊗ ei �(fi) = fi ⊗ k−1
i + 1 ⊗ fi �(ki) = ki ⊗ ki (64)

one can build tensor products of representations. In the present context we consider the
tensor product πµ

w ⊗πν
u of the evaluation representations associated with (29). Without loss of

generality we can set u = 1. The corresponding representation spaces, which we denote by the
same symbol, correspond to the auxiliary spaces of the Q-matrices on the left-hand side of the
functional equation (17). If the evaluation parameter w is set to the special value w = q/µν

the tensor product πµ
w ⊗πν

1 becomes decomposable, i.e. it contains subrepresentations W1,W2

of the quantum loop algebra giving rise to the non-split exact sequence

0 → W1
ι

↪→ πµ
w ⊗ πν

1
τ→ W2 → 0 w = q/µν. (65)

Here ı : W1 ↪→ πµ
w ⊗πν

1 is the inclusion and τ : πµ
w ⊗πν

1 → W2 = πµ
w ⊗πν

1

/
W1 the quotient

projection. The representations W1,W2 respectively the maps ı, τ have to be explicitly
calculated. This can be achieved by using the intertwiner S(w) : πµ

w ⊗ πν
1 → πµ

w ⊗ πν
1

detailed in the appendix and exploiting the fact that ker S(q/µν) = W1. One finds

W1 = π
µ′
w′ ⊗ π0

z′ and W2 = πµ
w ⊗ πν

1

/
W1 = π

µ′
w′′ (66)

with the various parameters given by

w = q/µν µ′ = µνq w′ = w′′ = wνq z′ = wµq. (67)

Here π0 is the root-of-unity limit, q3 → 1, of the two-dimensional representation of Uq(sl2)

in terms of Pauli matrices and π0
z′ the associated evaluation representation of the quantum loop

algebra. The explicit form of the inclusion and quotient projection is given in the appendix.
The functional equation (17) now follows from the definitions (20), (26) and the identities

L
µ

13(z/µ)Lν
23(zνq2)(ı ⊗ 1) = q(z − 1)(ı ⊗ 1)L

µνq

13 (zµ−1νq)R23(zq)

(τ ⊗ 1)L
µ

13(z/µ)Lν
23(zνq2) = (zq2 − 1)Lµνq(zµ−1νq)(τ ⊗ 1)

(68)

which can be verified by explicit calculation using the definitions (21), (28) and the results
(A.2), (A.3) in the appendix.
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Expressing the functional equation (17) in terms of the eigenvalues (11) we infer that the
following ratio:

Qµ(zq2)Qν(zqν2)

Qµνq(zqν2)
= zn∞PB(zq2)PB(zq−2)

NµNνPS(z
N ′
, µN)PS(z

N ′
ν2N ′

, νN)

qn∞+2nBNµνqPS(zN ′
ν2N ′

, µNνN)
(69)

must be independent of the parameters µ, ν. Here we have used the previous results (16) and
(50). Consequently, we must have that the ratio

NµNν/Nµν = lim
µ→1

Nµ ≡ N (70)

is independent of µ, ν. Furthermore, in order that the dependence on µ, ν from the complete
string contribution cancels one is led to the conclusion (18). Namely, the string centre zS

j (µ)

does either not depend on the parameter µ at all or it just depends on it via the simple factor
µ2. It follows that the ratio (69) simplifies to the expression:

Qµ(zq2)Qν(zqν2)

Qµνq(zqν2)
= N zn∞PB(zq2)PB(zq)PS(z

N ′
, µN = 1).

Inserting this identity into (17) and using the previously derived formula (15) for
the eigenvalues of the six-vertex transfer matrix completes the proof of the desired
equality (19) for N = 3.

We conclude this section by noting that the result (18) now also allows us to derive the
µ-dependence of the normalization constant in (11) for real eigenvectors. Employing (60) and
(70) setting µ → µ−1/2, ν → µ one arrives at

Nµ = Nµ− M
2 −nB−N ′n′

S µN ′n′
S =

nS∏
j=1

[
zS
j (µ1/2)

/
zS
j

]N ′
. (71)

Here n′
S is simply the number of exact string centres which depend on µ2. The above identity

in particular implies

Nµq = Nµq− M
2 −nB−N ′n′

S (72)

which fixes the arbitrary sign factor in (50) and thus in (15).

7. Discussion

In this paper we have analysed the eigenvalues of the auxiliary matrices (26) at roots of unity
belonging to the Abelian subvariety (8). Let us now summarize what we have learnt from
their spectra about the eigenvalues and eigenspaces of the six-vertex model at roots of 1.

Our starting point and motivation [1] for employing auxiliary matrices was the observation
that when qN = 1 the more commonly used approaches such as the coordinate space [14]
or algebraic Bethe ansatz [15] have serious drawbacks. For example, one derives from the
algebraic Bethe ansatz away from a root of unity the following expression for the eigenvalues
of the transfer matrix (20):

qN �= 1 : T (z, q) = b(z, q)Mq−nB

nB∏
j=1

zq2 − zB
j (q)

z − zB
j (q)

+ qnB

nB∏
j=1

zq−2 − zB
j (q)

z − zB
j (q)

(73)

with

qN �= 1 : nB = M

2
− |Sz|. (74)
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Here we have set as before zB
j = euB

j q−1. One often finds in the literature that this
parametrization is used for all real coupling values even though it breaks down when qN = 1.
This does not mean that the root-of-unity limit qN → 1 in (73) is ill-defined, it simply requires
the explicit knowledge of the Bethe roots. The latter, however, are usually not known due to
the intricate nature of the Bethe ansatz equations (2). What can happen in the root-of-unity
limit is that some of the Bethe roots drop out of the parametrization (73). As a concrete
example consider the spin-zero sector of the M = 6 chain when qN �= 1. One finds the three
Bethe roots

M = 6 Sz = 0 : zB
1 = 1 zB

2 = q−1 zB
3 = q−2

which belong to one of the eigenvalues of the transfer matrix in the four-dimensional
momentum k = 0 sector. If the limit q3 → 1 is taken the products over the Bethe roots
in (73) give simply one and the eigenvalue becomes degenerate with the eigenvalue of the
pseudo-vacuum consisting of the state where all spins point up (down).

Since the Bethe roots are not known in general one needs a parametrization of the
eigenvalues in terms of the finite solutions to the Bethe ansatz equations (2) when qN = 1.
This parametrization we found to be

qN = 1 : T (z) = b(z)Mq− M
2 +n∞

nB∏
j=1

zq2 − zB
j (q)

z − zB
j (q)

+ q
M
2 −n∞

nB∏
j=1

zq−2 − zB
j (q)

z − zB
j (q)

where the number of Bethe roots is not fixed by the total spin in contrast to (74). Instead, we
found the sum rule

qN = 1 : M − 2n∞ − 2nB = 0 mod N (75)

for real eigenvectors. Numerical examples for the M = 3, 4, 5, 6, 8 chain and N = 3, 4, 5, 6
showed so far that it also extends to complex eigenvectors provided nB �= 0. The above sum
rule also played an important role in the derivation of the Bethe ansatz equations (2) from the
functional equation (3). This derivation involved an additional phase factor which according
to (75) is trivial.

Note that the difference between qN �= 1 and qN = 1 is not ‘only’ a difference in the
number of Bethe roots and a change of the phase factors in front of the products in (73). In
the root-of-unity limit also the eigenstates of the transfer matrix ‘re-organize’ into degenerate
eigenspaces across sectors of different spin. The main objective outlined in the introduction
was to investigate the structure of these degenerate eigenspaces. We will now discuss how
this information is encoded in the complete strings (14). Recall that the complete string
contribution in the eigenvalues of the auxiliary matrices (26) is already fixed by the Bethe
root content via the identities (18) and (19). So far we have only explained how these results
determine the dimension of the degenerate eigenspaces. For several examples we will now
explicitly see how the complete strings characterize the degenerate eigenspaces in terms of
irreducible representations of the loop algebra s̃l2.

7.1. The Drinfeld polynomial and complete strings

Recall that the loop algebra s̃l2 has been established as a symmetry of the six-vertex model in
the commensurate sectors where the total spin is a multiple of the order of the root of unity, i.e.
2Sz = 0 mod N [6, 7]. In order to make the connection between the spectra of the auxiliary
matrices and the loop algebra we need first to introduce some facts about its representation
theory [30].
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There are several bases to write down the loop algebra s̃l2. The most convenient one for
the present purpose is the mode basis obeying the relations :

hm+n = [
x+

m, x−
n

] [
hm, x±

n

] = ±2x±
m+n

[hm, hn] = 0
[
x±

m+1, x
±
n

] = [
x±

m, x±
n+1

]
.

(76)

The generators
{
x±

m, hm

}
m∈Z

can be successively obtained from the Chevalley–Serre basis of
the quantum loop algebra U res

q (s̃l2) at qN = 1 via the quantum Frobenius homomorphism
[30, 7] (for simplicity we only consider N odd)

E
(N)
1 → x+

0 F
(N)
1 → x−

0 E
(N)
0 → x−

1 F
(N)
0 → x+

−1 2Sz/N → h0 (77)

and with the action of the quantum group generators given by [6, 7]3

E
(N)
1 (q) = F

(N)
0 (q−1) = RE

(N)
0 (q)R = RF

(N)
1 (q−1)R =

∑
1�m1<···<mN �M

1 ⊗ · · · ⊗ σ +

mth
1

⊗ q(N−1)σ z · · · ⊗ σ +

mth
2

⊗ q(N−2)σ z · · · qσz ⊗ σ +

mth
N

⊗ 1 · · · ⊗ 1.

Here R denotes the spin-reversal operator. As we are only considering spin-chains of finite
length, all representations of the loop algebra are finite-dimensional and therefore highest
weight [30]. That is, there exists a highest weight vector � satisfying

x+
n� = 0 hn� = x+

nx−
0 � = x+

0 x−
n � = λn� λn ∈ C. (78)

All finite-dimensional irreducible highest-weight representations are isomorphic to tensor
products of evaluation representations [30]. Let πs : sl2 → End C

2s+1 denote the spin s

representation of the finite subalgebra sl2 = {
x±

0 , h0
} ⊂ s̃l2. Then define the evaluation

representation πs
a : s̃l2 → End C

2s+1 by setting

πs
a

(
x±

0

) = πs
(
x±

0

)
πs

a

(
x∓

±1

) = a±1πs
(
x∓

0

)
πs

a (h0) = πs(h0) a ∈ C. (79)

The information which evaluation representations are contained in the highest weight
representation π� is conveniently encoded in the classical analogue of the Drinfeld polynomial
P� according to the following correspondence [30]:

π�
∼= πs1

a1
⊗ · · · ⊗ πsn

an
⇔ P�(u) =

n∏
j=1

(1 − aju)2sj . (80)

Here all zeros aj are different. The Drinfeld polynomial can be explicitly calculated from the
eigenvalues λn of the Cartan elements hn via the following Laurent series expansions around
u = 0 and u = ∞ [30]:

∞∑
n=0

λnu
n = deg P� − u

P ′
�(u)

P�(u)

∞∑
n=1

λ−nu
−n = −u

P ′
�(u)

P�(u)
. (81)

The important observation in connection with the auxiliary matrices constructed in [1] is
now the following: the Drinfeld polynomials of the highest weight representations spanning the
degenerate eigenspaces of the transfer matrix coincide with the complete string contributions
(19) appearing in the spectrum of Qµ(z) when we identify u = zN . That is, we find up to a
possible renummeration the identification

dim π� = 2nS and aj = lim
µ→1

zS
j (µ)−N . (82)

At the moment we do not have a general proof of this assertion but we have verified it for
several examples; (see the appendix). We consider one of them in detail to illustrate the
interplay between the auxiliary matrices and the loop algebra s̃l2.
3 Here we have used a different convention for the coproduct than in [6, 7]. However, one analogously proves in this
case that the quantum group generators commute with the six-vertex transfer matrix in the commensurate sectors.
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7.1.1. Examples for N = 3. Consider the spin-chain with M = 6 sites and the primitive
root of unity q = exp(2π i/3). Then the vector with all spins up

M = 2N = 6 : � =↑ ⊗ ↑ · · ·⊗ ↑≡ |↑↑ · · · ↑〉 (83)

lies in the commensurate sector Sz = 0 mod N, where the loop algebra generators are defined
via (77). The corresponding eigenvalue of the transfer matrix

T (z, q)|π�
= 1 + b(z, q)6

is four-fold degenerate with the eigenspace π� spanned by

π� = {�}Sz=3 ⊕ {x−
1 �, x−

0 �}Sz=0 ⊕ {R�}Sz=−3.

Here we have indicated via the lower indices the respective spin-sectors. All eigenvectors
have zero momentum. Given the highest weight vector one can now proceed and calculate the
corresponding Drinfeld polynomial. From the scalar products

λ0 = 〈�|x+
0 x−

0 |�〉 = 〈�|E(3)
1 F

(3)
1 |�〉 = 1

2 dim π� = 2

λ1 = 〈�|x+
0 x−

1 |�〉 = 〈�|E(3)
1 E

(3)
0 |�〉 = a+ + a− = 20

λ2 = 〈�|x+
0 x−

2 |�〉 = 〈�|(x+
0 x−

1

)2 − 1
2

(
x+

0

)2(
x−

1

)2|�〉 = a2
+ + a2

− = 398 . . .

one finds (see also [31])

P�(u) = (1 − a+u)(1 − a−u) with a± = 10 ± 3
√

11 = (10 + 3
√

11)±1. (84)

Diagonalizing the auxiliary matrix Qµ(z) in the respective spin sectors one computes the
following complete string contributions in the subspace of momentum zero:

Sz = +3 : PS(z
3, µ6) = z6 − 20z3µ3 + µ6 = (z3 − a+µ

6)(z3 − a−µ6)

Sz = −3 : PS(z
3, µ6) = z6µ6 − 20z3µ3 + 1 = (z3 − a+)(z

3 − a−)
(85)

and

Sz = 0 : P ±
S (z3, µ6) = z6 − z3(10(µ6 + 1) ± 3

√
11(µ6 − 1)) + 1

= (z3 − a±µ6)(z3 − a∓).

Note that
{
E

(3)
0 �,F

(3)
1 �

}
are in general not eigenvectors of the auxiliary matrix, but that

the eigenvectors of Qµ(z) are contained in the two-dimensional space spanned by them.
Taking the limit µ → 1 and identifying z3 = u we recover the Drinfeld polynomial (84)
from the complete strings. In this limit the auxiliary matrix becomes degenerate—as the
representation underlying the definition (26) becomes reducible—and E

(3)
0 �,F

(3)
1 � are now

both eigenvectors of the auxiliary matrix. However, in general we want to keep the auxiliary
matrix non-degenerate and therefore µ should be chosen different from one.

The above example also nicely confirms the picture outlined in the introduction.
According to (18) there are 2nS = 4 possible eigenvalues of the auxiliary matrix in the
degenerate eigenspace of the transfer matrix, all of which we find realized.

Note that the match between the complete string centres and the evaluation parameters
is a virtue particular to the auxiliary matrices (26) constructed in [1]. In the context of the
six-vertex model the other explicit expression in the literature is Baxter’s formula (101) in [10]
(which applies to all coupling values γ ∈ R but only to the sectors of vanishing total spin),

Sz = 0 : QBaxter(z)
β1...βM

α1...αM
= exp

(
1

4
iγ

M∑
m=1

m−1∑
n=1

(αmβn − αnβm) +
1

4
u

M∑
m=1

αmβm

)
. (86)

Here z = euq−1, q = eiγ . Diagonalizing this matrix in the two-dimensional subspace{
E

(3)
0 �,F

(3)
1 �

}
of the spin-zero sector we find for each of the two eigenvalues only a single
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complete string with string centres zS = ±1. Thus, for Baxter’s auxiliary matrix neither the
degree of the complete string contribution nor the values of the string centres are in agreement
with the data obtained from the loop algebra.

Admittedly, the above example for the M = 6 chain is quite simple and we chose it to
illustrate the working of the formulae. One might wonder if the identification of complete
strings and the Drinfeld polynomial also applies when the highest weight vector is a real
Bethe eigenstate, i.e. when finite Bethe roots are present. We have explicitly worked out the
following examples with q = exp(2π i/3): for the M = 5 chain one finds five doublets in
the Sz = ±3/2 sectors and for the M = 8 chain there are eight quartets in the Sz = 3, 0,−3
sectors. In all of these cases there is an agreement between the complete strings (14) calculated
from the auxiliary matrices (26) and the Drinfeld polynomial (80). The results are presented
in the appendix. They also show the working of the identity (19) which yields expressions for
the evaluation parameters of the loop algebra in terms of Bethe roots. Also the Bethe ansatz
equations are recovered by making a Laurent series expansion in (19). This shows an intimate
link between the Bethe ansatz and the representation theory of the loop algebra.

7.2. Comparison with the eight-vertex model

We conclude by mentioning that the identity (19) coincides with the trigonometric limit of a
recent conjecture by Fabricius and McCoy [32] on the eigenvalues of Baxter’s eight-vertex
auxiliary matrix constructed in [9]. (Note that this auxiliary matrix is different from the one
discussed in [10–13].) Based on numerical results for the M = 8 chain and N = 3, 4, 6 they
arrive at the elliptic analogue of the identity (19) by using a functional equation similar in
nature to (17) (cf equations (3.12) and (3.10) in [32]). However, there are some key differences
as Baxter’s construction procedure and the one used in [1] are not the same. In particular, the
dependence on continuous parameters analogous to (4) respectively (8) is absent in Baxter’s
matrix [9]. In the context of the auxiliary matrices (26) we saw that these parameters play a
crucial role in breaking the loop algebra symmetry and the invariance under spin-reversal. A
direct comparison between the auxiliary matrices for the eight [9–12] and six-vertex model [1]
is not straightforward: taking the trigonometric limit in the eight-vertex eigenvalues requires
the knowledge of the explicit dependence of various normalization constants and the Bethe
roots on the elliptic nome. Further, investigations are needed to clarify this point.
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Appendix A. The intertwiner for πµ
w ⊗ πν

1 with N = 3

In this section we construct the intertwiner for the following tensor product of evaluation
representations πµ

w ⊗ πν
1 with N = 3. If this intertwiner exists the auxiliary matrices

Qµ(w),Qν(w
′) must commute, i.e. the conjecture (9) holds true for N = 3. The defining

equation of the intertwiner S is given by

S(w)
(
πµ

w ⊗ πν
1

)
�(x) = [(

πµ
w ⊗ πν

1

)
�op(x)

]
S(w) x ∈ Uq(s̃l2). (A.1)
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Here πµ
w is the evaluation representation (63) obtained from (29) for N = 3. The symbols

�,�op denote the coproduct (64) and the opposite coproduct. The latter is obtained by
permuting the two factors in (64). The defining equation (A.1) yields a system of algebraic
equations for the matrix elements of the intertwiner. As S commutes with

(
πµ

w ⊗ πν
1

)
�(ki) it

is convenient to decompose the tensor product space into the following direct sum:

V = V1 ⊕ V2 ⊕ V3

where the respective subspaces are spanned by the following basis vectors:

V1 = span{v0 ⊗ v0, v1 ⊗ v2, v2 ⊗ v1}
V2 = span{v0 ⊗ v1, v1 ⊗ v0, v2 ⊗ v2}
V3 = span{v0 ⊗ v2, v1 ⊗ v1, v2 ⊗ v0}.

Here vi, i = 0, 1, 2 denotes the standard basis in C
3 used in the definition (29) of the

representation πµ. The calculation is cumbersome but straightforward and one finds the
following solution up to a common normalization factor:

S|V1 =


1 0 0

0 q(wµ−ν)(wµν−q)

(wq−µν)(wq2−µν)

(wµν−q)(µ2−q2)

(wq−µν)(wq2−µν)

0 w(wµν−q2)(ν2−q2)

(wq−µν)(wq2−µν)

q(wν−µ)(wµν−q)

(wq−µν)(wq2−µν)



S|V2 =


q2(wµ−ν)

wq−µν

q−µ2

wq−µν
0

w(q−ν2)

wq−µν

q2(wν−µ)

wq−µν
0

0 0 (wµν−q)(wµν−q2)

(wq−µν)(wq2−µν)



S|V3 =


q2(wµ−ν)(wµ−νq2)

(wq−µν)(wq2−µν)

(q−µ2)(wµ−ν)

(wq−µν)(wq2−µν)

(µ2−q)(µ2−q2)

(wq−µν)(wq2−µν)

w(wµ−ν)(ν2−q2)

(wq−µν)(wq2−µν)

µν(1+q2w2)+wq(µ2+1)(ν2+1)

(wq−µν)(wq2−µν)

(µ2−q2)(wν−µ)

(wq−µν)(wq2−µν)

w2(ν2−q)(ν2−q2)

(wq−µν)(wq2−µν)

w(q−ν2)(wν−µ)

(wq−µν)(wq2−µν)

q2(wν−µ)(wν−µq2)

(wq−µν)(wq2−µν)

 .

We can now use this solution in order to explore the decomposition of the tensor product at
special values of the evaluation parameter w. One can explicitly verify that for w = q/µν the
intertwiner has a non-trivial kernel consisting of the following six-dimensional space:

ker S1(q/µν) = span{v1 ⊗ v2, v2 ⊗ v1}
ker S2(q/µν) = span

{
v2 ⊗ v2,

(µ2 − q)ν

1 − q2ν2
v0 ⊗ v1 + v1 ⊗ v0

}
ker S3(q/µν) = span

{
ν2(µ2 − q)(µ2 − q2)

(q − ν2)(ν2q − 1)
v0 ⊗ v2

+ v2 ⊗ v0,
ν(q − µ2)

ν2q − 1
v0 ⊗ v2 + v1 ⊗ v1

}
.

This kernel can be identified as a submodule W1 ⊂ πµ
w ⊗ πν

1 of the quantum loop algebra.

Appendix A.1. The inclusion ı : π
µ′
w′ ⊗ π0

z′ ↪→ W1 ⊂ πµ
w ⊗ πν

1

We define the module W1 simply by stating the inclusion of the basis vectors spanning the
tensor product π

µ′
w′ ⊗ π0

z′ into the tensor product πµ
w ⊗ πν

1 . Denote by {v′
i} the basis vectors

in π
µ′
w′ and by {↑,↓} the basis vector of the two-dimensional representation of Uq(sl2). Then
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the inclusion ı is defined by linear extension from the following relations involving the basis
vectors:

ι(v′
2 ⊗ ↓) = αv2 ⊗ v2 ι(v′

2 ⊗ ↑) = αv2 ⊗ v1

ι(v′
1 ⊗ ↑) = γ0{γ1v1 ⊗ v1 + v2 ⊗ v0} ι(v′

1 ⊗ ↓) = γ2v1 ⊗ v2 + γ3v2 ⊗ v1 (A.2)

ι(v′
0 ⊗ ↑) = β0v0 ⊗ v1 + v1 ⊗ v0 ι(v′

0 ⊗ ↓) = β0v0 ⊗ v2 + β1v1 ⊗ v1 + β2v2 ⊗ v0.

The coefficients in the above linear combinations are given by

α = (µ2ν2 − 1)(1 − qµ2ν2)

ν(µ2q − 1)(ν2 − q)

β0 = (µ2 − q)ν

1 − q2ν2
β1 = νβ0 + 1 − γ0γ1q

2 β2 = νq − γ0q
2

γ0 = α(1 − ν2q2)

µ2ν2 − 1
γ1 = ν(µ2 − q2)

q − ν2
γ2 = (β0qν − 1)

γ3 = [qα + ν(q2 − νβ0).

Acting with the quantum group generators according to (64) on the basis vectors in the
respective tensor products of evaluation representations one verifies that the above inclusion
is well-defined.

A.2. The projection τ : πµ
w ⊗ πν

1 → W2 = πµ
w ⊗ πν

1

/
W1

Having identified the submodule W1 it remains to verify that the quotient space W2 defines the
evaluation representation π

µ′′
w′′ as outlined in (65), (66) and (67). This follows when identifying

the equivalence classes of the following vectors in πµ
w ⊗πν

1 with the basis vectors {v′′
i } in π

µ′′
w′′ :

v′′
0 ≡ τ(v0 ⊗ v0)

v
′′
1 ≡ τ(v0 ⊗ v1 + νqv1 ⊗ v0) (A.3)

v′′
2 ≡ τ(v0 ⊗ v2 − νq2v1 ⊗ v1 + ν2q2v2 ⊗ v0).

This concludes the proof of the decomposition (65). Using the explicit form of the inclusion
and projection map one is now in the position to proof the functional equation (17) as described
in the text.

Appendix B. Calculation of the Drinfeld polynomial

We present several examples of calculating the evaluation parameters (80) of the loop algebra in
the degenerate eigenspaces of the transfer matrix when q = exp(2π i/3). We then compare the
outcome with the expression (19) derived from the complete strings of the auxiliary matrices.

B.1. M = 5, Sz = ±3/2

There are in total five doublets for the M = 5 chain in the sectors Sz = ±3/2. The
corresponding highest weight vectors �k can be labelled by their momenta and are defined as
follows:

�k =
5∑

n=1

einkT (1, q)n |↑↑↑↑↓〉 k/π = 0,±2/5,±4/5.
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Since there are only doublets occurring in this example the corresponding Drinfeld polynomials
P�k

defined in (80) contain only one factor. For each highest weight vector the corresponding
evaluation parameter a(k) is calculated using the action of the loop algebra,

x+
0 x−

1 �k = [4 + 3q e−ik + (1 + 2q2) e−2ik + (1 + 2q) e−3ik + 3q2 e−4ik]�k = a(k)�k. (B.1)

In order to compare this result with the complete strings we may either directly diagonalize
the auxiliary matrices (26) in the respective spin-sectors or use the identity (19). In the latter
approach one first solves the Bethe ansatz equation

1 = q5

(
1 − zBq2

1 − zB

)5

(B.2)

and then computes from the Bethe roots the complete strings in the limit µ → 1,

N
(
z3 − z3

S

) =
∑
�∈Z3

(zq2� − 1)5

(zq2� − zB)(zq2(�+2) − zB)
= − 3

z2
B

(
1 +

1 − 10z2
B(zB + q2)

z3
B

z3

)
. (B.3)

Bethe roots and momenta can be easily matched by taking the limit z → 1 in (15) yielding
the following second identity for the evaluation parameter:

a(k) = 10 + 10q2/zB − 1
/
z3
B eik = −q

1
2

1 − zBq2

1 − zB

. (B.4)

Note that the Bethe ansatz equations (B.2) are recovered from the Laurent series expansion in
(B.3) by setting all coefficients of the terms with powers greater than three equal to zero.

B.2. M = 8, Sz = 3, 0,−3

For the M = 8 chain one proceeds similar as in the previous case. One now has eight quartets
whose highest weight vectors in the Sz = 3 sector are again labelled by their momenta

�k =
8∑

n=1

einkT (1, q)n|↓↑↑↑↑↑↑↑〉.

The degree of Drinfeld polynomial P�k
is now two, i.e. there are two evaluation parameters

a± = a±(k) to compute. After some cumbersome computations one obtains

a+ + a− = 〈�k|x+
0 x−

1 |�k〉 = 35 + 15q e−ik + 5i
√

3q2 e−2ik − (5 − 2q) e−3ik

+ 6 e−4ik − (5 − 2q2) e−5ik − 5i
√

3q e−6ik + 15q2 e−7ik

and

4a+a− = 〈�k|
(
x+

0

)2(
x−

1

)2|�k〉
= 4(e−ik + q e−2ik + q2 e−3ik + e−4ik + q e−5ik + q2 e−6ik + e−7ik)2.

Again we can compare this result against the complete string by diagonalizing the auxiliary
matrices or by employing the identity (19). In either case one finds upon matching string
centres and evaluation parameters the following expression in terms of the Bethe roots:

a+ + a− = 56 + 28q2/zB − 1
/
z3
B a+a− = 28 + 56q2/zB − 56

/
z3
B − 28q2

/
z4
B + 1

/
z6
B.

Here Bethe roots and momenta are related by the identity

eik = q2 1 − zBq2

1 − zB

.

In order to facilitate the comparison we have summarized the results in the table below.
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Momentum String centres/evaluation parameters a± Bethe root zB/q2

k = 0 1
2 (29 ± 3

√
93) −1

k = π 1
2 (83 ± 9

√
85) 1

k = π/2 1
2

(
13(2 +

√
3) ±

√
165(7 + 4

√
3)

)
−2 − √

3

k = −π/2 1
2

(
13(2 − √

3) ±
√

165(7 − 4
√

3)
)

−2 +
√

3

k = π/4 a+ = 38.971 . . . a− = 0.068 0614 . . . 1 − 3√
2

−
√

3
2 (2 − 2

√
2)

k = 3π/4 a+ = 59.9864 . . . a− = 0.615 865 . . . 1 + 3√
2

+
√

3
2 (2 + 2

√
2)

k = 5π/4 a+ = 1.62373 . . . a− = 0.016 6705 . . . 1 + 3√
2

−
√

3
2 (2 + 2

√
2)

k = 7π/4 a+ = 14.6926 . . . a− = 0.025 6601 . . . 1 − 3√
2

+
√

3
2 (2 − 2

√
2)

References

[1] Korff C 2003 J. Phys. A: Math. Gen. 36 5229–66
[2] Lieb E H 1967 Phys. Rev. 162 162–72
[3] Lieb E H 1967 Phys. Rev. Lett. 18 1046–8
[4] Lieb E H 1967 Phys. Rev. Lett. 19 108–10
[5] Sutherland B 1967 Phys. Rev. Lett. 19 103–4
[6] Deguchi T, Fabricius K and McCoy B M 2001 J. Stat. Phys. 102 701–36
[7] Korff C and McCoy B M 2001 Nucl. Phys. B 618 [FS] 551–69
[8] Baxter R J 1971 Phys. Rev. Lett. 26 193–228
[9] Baxter R J 1972 Ann. Phys., NY 70 193–228

[10] Baxter R J 1973 Ann. Phys., NY 76 1–24
[11] Baxter R J 1973 Ann. Phys., NY 76 25–47
[12] Baxter R J 1973 Ann. Phys., NY 76 48–71
[13] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[14] Bethe H A 1931 Z. Phys. 71 205–26
[15] Fadeev L D, Sklyanin E K and Takhtajan L A 1979 Theor. Math. Phys. 40 194–220
[16] Bazhanov V, Lukyanov S and Zamolodchikov A 1997 Commun. Math. Phys. 190 247–78
[17] Bazhanov V, Lukyanov S and Zamolodchikov A 1999 Commun. Math. Phys. 200 297–324
[18] Antonov A and Feigin B 1997 Phys. Lett. B 392 115–22
[19] Rossi M and Weston R 2002 J. Phys. A: Math. Gen. 35 10015–32
[20] Roche P and Arnaudon D 1989 Lett. Math. Phys. 17 295–300
[21] De Concini C and Kac V 1990 Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant

Theory (Progress in Mathematical Physics 92) ed A Connes (Boston: Birkhäuser) p 471
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